

SSC8332GSB

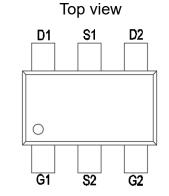
Dual N-Channel Enhancement MOSFET

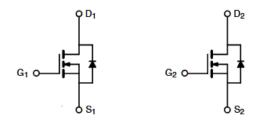
> Features

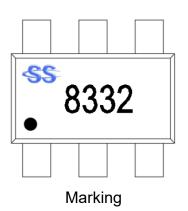
VDS	VGS	RDSON Typ.	ID
30V	13077	28mR@10V	2 0 4
	±20V	40mR@4V5	3.8A

> Description

SSC8332GSB uses advanced trench technology to provide excellent RDSON and low gate charge. The complementary MOSFETS may be used to form a level shifted high side switch, and for a host of other applications.


> Applications


- Inverter
- DC-DC converter
- Half and Full Bridge Topology


Ordering Information

Device	Package	Shipping
SSC8332GSB	SOT23-6L	3000/Reel

Pin configuration

➤ **Absolute Maximum Ratings**(T_A=25°C unless otherwise noted)

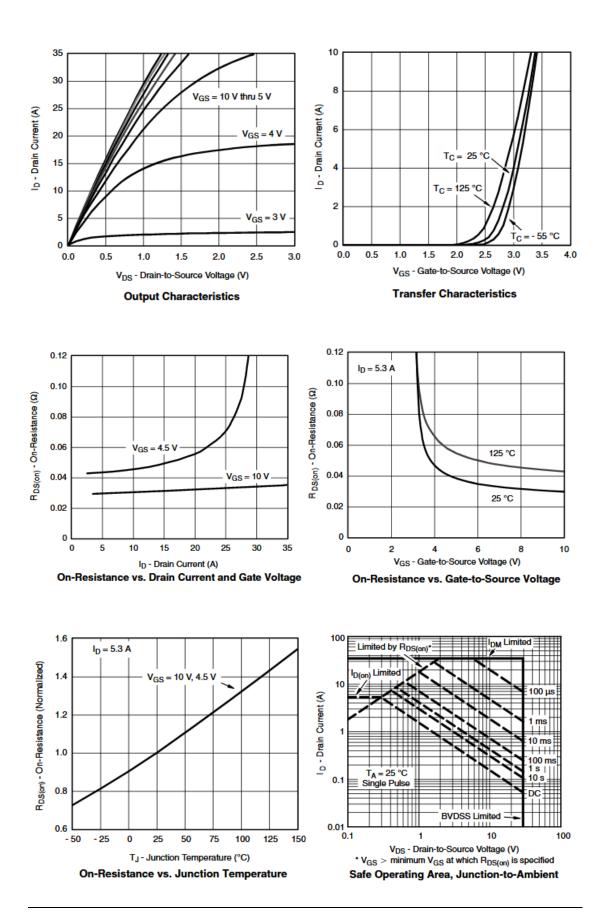
Symbol	Parameter		Ratings	Unit
V _{DSS}	Drain-to-Source Voltage		30	V
V _{GSS}	Gate-to-Source Voltage		±20	V
I _D	Continuous Drain TA=25℃		3.8	А
	Current ^a TA=70°C		2.3	А
I _{DM}	Pulsed Drain Current ^b		16	Α
P _{DSM}	Power Dissipation ^a		2.4	W
P _D	Dawer Dissipation C	TA=25°C	1.25	W
	Power Dissipation ^c	TA=70°C	0.8	W
TJ	Operation junction temperature		-55 to 150	°C
T _{STG}	Storage temperature range		-55 to 150	°C

➤ Thermal Resistance Ratings(T_A=25°C unless otherwise noted)

Symbol	ool Parameter		Maximum	Unit
Reja	Junction-to-Ambient Thermal Resistance ^a		100	°C // //
Rejc	Junction-to-Case Thermal Resistance		52	°C/W

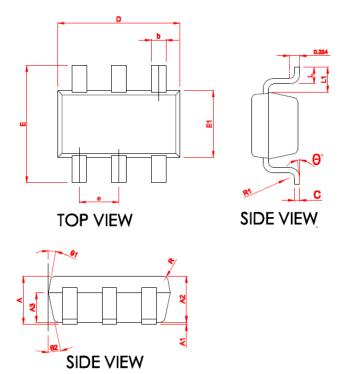
Note:

- a. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with T_A =25°C. The value in any given application depends on the user is specific board design. The current rating is based on the t \leq 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.



➤ Electronics Characteristics(T_A=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V , ID=250uA	30			V
V _{GS (th)}	Gate Threshold Voltage	VDS=VGS , ID=250uA	1	1.5	2	V
Б	Drain-Source On-	VGS=10V , ID=3.8A		28	38	D
R _{DS(on)}	Resistance	VGS=4.5V , ID=3A		40	55	mR
I _{DSS}	Zero Gate Voltage Drain Current	VDS=24V , VGS=0V			1	uA
I _{GSS}	Gate-Source leak	VGS=±20V , VDS=0V			±100	nA
G _{FS}	Transconductance	VDS=5V , ID=3.6A		11		S
V _{SD}	Forward Voltage	VGS=0V , IS=1.1A		0.78	1.3	V
Ciss	Input Capacitance			210		
Coss	Output Capacitance	VDS=15V , VGS=0V,		44		pF
Crss	Reverse Transfer Capacitance	f=1MHZ		16		
Qg	Total Gate Charge	VD0 45V V00 40V		6		
Qgs	Gate Source Charge	VDS=15V , VGS=10V,		1.1		nC
Qgd	Gate Drain Charge	ID=3.8A		1.5		
T _{D(ON)}	Turn-on delay time			11		
Tr	Rise time	VDS=15V, VGS=10V,		55		
T _{D(OFF)}	Turn-off delay time	RL=10R, RGEN=6R		12		ns
Tf	Fall time			22		



➤ N-Channel Typical Characteristics(T_A=25°C unless otherwise noted)

> Package Information

	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
Α	1.06	1.15	1.24	
* A1	0.01	0.05	0.09	
* A2	1.05	1.10	1.15	
A3	0.65	0.70	0.75	
* b	0.30	0.35	0.45	
* с	0.117	0.127	0.157	
* D	2.87	2.92	2.97	
* E	2.72	2.80	2.88	
* E1	1.55	1.60	1.65	
* е	0.90	0.95	1.00	
* L	0.32	0.40	0.48	
* L1	0.55	0.60	0.65	
R	0.10 REF			
R1	0.12 REF			
* 0	0		8°	
θ1	8°	10°	12°	
θ2	10°	12°	14°	

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.